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Abstract  

Sixteen US states have begun to hold teacher preparation programs (TPPs) accountable for the 

quality of their teachers, as estimated by teachers’ effects on student test scores. Yet it is not easy to 

identify TPPs whose teachers are substantially better or worse than average. The true differences 

between TPPs are small; the estimated differences are not very reliable; and when comparing many 

TPPs, the multiple comparisons problem increases the danger of classifying ordinary TPPs as good or 

bad. In addition, there are different statistical methods for comparing TPPs, and the choice of method 

can affect which TPPs appear to be different. Using Texas data, we compare and evaluate methods for 

comparing TPPs. We find it is rarely possible to identify TPPs that are better or worse than average. The 

potential benefits of TPP accountability may be too small to balance the risk that a proliferation of noisy 

TPP estimates will encourage arbitrary and ineffective policy actions. 
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1 Introduction 

After years of holding individual teachers accountable for their effects on student learning, policy 

leaders have raised their sights to the programs that prepare teachers for the classroom. While 

governments have long played a role in approving and funding teacher preparation programs (TPP), 

sixteen states have begun to practice a new form of TPP accountability that has higher stakes and is 

more focused on results. 

The purpose of the new TPP accountability is to “close failing [TPPs], strengthen promising 

programs, and expand excellent programs” (Levine, 2006; cf. US Department of Education, 2011). In 

Texas, for example, the State Board of Educator Certification is now authorized to warn a TPP, to put a 

TPP on probation, to assign a TPP to intervention, or to revoke a TPP’s accreditation. The Board is also 

required to post estimates of TPP quality on the internet, providing “consumer information” that, like 

college rankings, can guide aspiring teachers in deciding which TPP will train them, and guide school 

administrators in deciding between job candidates from different TPPs (Texas State Legislature, 2009). 

To assess TPP quality, the new accountability systems “focus on student achievement as the 

primary measure of success” (Levine, 2006). A “good” TPP is defined as one whose teachers raise 

student test scores and graduation rates more than teachers from other TPPs. Defining TPP quality in 

terms of student outcomes is a sharp break with older systems that defined quality in terms of TPP 

inputs, resources, or processes. For example, as of 2006 states approved and accredited TPPs primarily 

on the basis of their coursework and student teaching requirements. About a third of states required 

faculty to hold a doctorate, and about a third also required prospective teachers to pass an admission or 

graduation test and to exceed a threshold grade point average (GPA) (Levine, 2006, Table 14). Under 

the new accountability, a TPP’s training methods and the grades or test scores of its trainees are 
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secondary issues. The primary question is whether the TPP is turning out teachers who raise student 

achievement. 

While a policy of holding TPPs accountable for the effects of their teachers may seem promising, 

several conditions must be met for it to work in practice. The first condition is that teachers from 

different TPPs must differ substantially in their effectiveness. The average difference between teachers 

from good and bad TPPs must be large enough that a decision to expand a good TPP or close a bad one 

would have a meaningful effect on student achievement. This is not a given. Although individual 

teachers vary substantially in effectiveness, it does not necessarily follow that all or even most of the 

good teachers come from good TPPs. To the contrary, it may be that little of the variation in teacher 

effectiveness lies between TPPs, in which case the differences between teachers from good and bad 

TPPs may not be large enough for TPP accountability to make a difference. 

A second condition for effective accountability is that it must be possible to estimate the 

differences between TPPs reliably—i.e., without too much estimation error or noise. Noise adds to the 

variation in TPP estimates and makes the differences between TPPs appear larger than they truly are. In 

addition, noise makes it hard to tell which TPPs are better or worse. If estimated TPP differences are 

very noisy, then a TPP’s position at the top or bottom of the rankings may have more to do with random 

estimation error than with true quality, and policies based on TPP rankings will be arbitrary and 

ineffective. In the extreme, if the estimated differences between TPPs were completely unreliable, 100 

percent noise, then shutting down the TPP with the worst estimate would be equivalent to shutting down 

a TPP at random.  

A third condition for effective TPP accountability is that we must be able to identify with 

confidence the individual TPPs that are better or worse than average. Singling out good and bad TPPs is 

not a trivial matter. It is possible to accept the global hypothesis that TPPs differ in their effects, and yet 
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remain uncertain about which individual TPPs are better or worse. Noise in the estimated TPP 

differences is just one problem. Another problem is multiple tests (Hsu, 1996). We can test each TPP 

estimate for significance, but if we conduct multiple hypothesis tests at a significance level of .05 (or 

equivalently, if we calculate multiple 95 percent confidence intervals [CIs]), then purely by chance we 

would expect to conclude that 5 of the nearly 100 TPPs in Texas differ significantly from the average—

even if all were truly identical. Even in a state with just 20 TPPs, all identical, there would be a 64 

percent chance (1–.9520) of erroneously concluding that at least one TPP is significantly different. To 

avoid basing policy decisions on random chance, it is necessary to correct for multiple tests. This 

correction will inevitably reduce the number of TPPs that appear to be different. 

In short, the potential of a TPP accountability system hinges on the three questions in our title:  

1. How big are the teacher quality differences between TPPs?  

2. How reliably can those differences be estimated?  

3. How confidently can we single out individual TPPs as different? 

The answers to these question are unsettled. TPP evaluations in New York City and Louisiana suggested 

that there were large teacher quality differences between TPPs, and that those differences could be 

reliably detected despite noise in the estimates (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2009; 

Gansle, Noell, & Burns, 2012). But more recent TPP evaluations in Missouri and Washington state 

suggested that true teacher quality differences between TPPs were quite small (Goldhaber, Liddle, & 

Theobald, 2013; Koedel, Parsons, Podgursky, & Ehlert, 2015)—in fact indistinguishable from zero in 

some Missouri analyses (Koedel, Parsons, et al., 2015). The Missouri evaluation estimated that most of 

the variation between TPP estimates consisted of noise rather than true differences in teacher quality 

(Koedel, Parsons, et al., 2015). No TPP evaluation has considered the problem of multiple tests. 
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While it is possible that the differences between TPPs are larger in some states than in others, it is 

also possible that the divergent conclusions of past TPP evaluations were due in part to methodological 

decisions. Past research has highlighted the sensitivity of TPP estimates to decisions about which 

covariates to include, whether to include school fixed effects, and how to cluster standard errors  

(Koedel, Parsons, et al., 2015; Lincove, Osborne, Dillon, & Mills, 2014; Mihaly, McCaffrey, Sass, & 

Lockwood, 2013), and there are further modeling issues, such as whether to include random effects at 

the teacher, school, or district levels (e.g., Gansle et al., 2012). Once a model has been fit, the 

methodological decisions are note over. There remain a variety of methods that can be used to assess 

how much noise is present in the estimates, adjust for it, and address the issue of multiple tests. 

In this article, we use an exceptionally large and diverse Texas dataset to estimate teacher quality 

differences between TPPs. We compare a variety of models, with clusters and random effects at various 

levels, and we compare a variety of methods for estimating the presence, size, and reliability of TPP 

differences.  

We find that TPP point estimates are fairly robust to modeling decisions, but standard error (SE) 

estimates are more sensitive and can be biased and volatile. While the SE estimates are necessary for 

some purposes, we show that some methods can ignore the SE estimates and use the point estimates 

alone to estimate the variance that is due to true differences between TPPs and the variance that is due to 

noise. We also demonstrate graphical methods that can make the problems of noise and multiple tests 

more salient when TPP estimates are presented to policy makers.  

In every plausible analysis, we find that the teacher quality differences between TPPs are small, 

and the estimates of those differences consist mostly of noise, even in large TPPs. We also find that 

hardly any TPPs can be flagged as different after adjustments are made for multiple tests. These results 

suggest that TPP accountability systems have very limited potential to improve student achievement. In 
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addition, careless reading can lead policy makers to make decisions about TPPs that are both arbitrary 

and ineffective. 

2 Data  

We use data from the Texas Education Agency (TEA) to estimate the effects of TPPs on student 

test scores in the spring of 2011. Although some Texas school districts had previously linked teachers to 

students, 2011 was the first year for which TEA linked students to teachers statewide,  

As the second largest US state, Texas offers a lot of statistical power to detect even small TPP 

effects. The population of Texas exceeds the populations of Louisiana, New York City, Missouri, and 

Washington state combined.  Table 1 shows that even a single year of Texas data, limited to 1st-3rd year 

teachers, has over 6,000 math teachers with nearly 300,000 students and nearly 5,000 reading teachers 

with over 200,000 students. If it is challenging to estimate TPP effects reliably in Texas, we may assume 

that it would be even more challenging in the 48 states that are smaller. A mid-sized state like Missouri, 

for example, would take five years to accumulate the sample size that we get from one year in Texas.  

Table 2 lists the TPPs in our data. Texas TPPs are diverse in both size and approach. The largest 

TPP, at the top of the table, contributed over 1,000 math teachers to our data; the smallest TPPs, near the 

bottom, contributed only 4 each. Although many Texas TPPs are traditional programs run out of 

colleges and universities, the state’s four largest TPPs are newer “alternative” TPPs, three of which are 

run for profit. Other TPPs are run by independent school districts (ISDs) and regional educational 

service centers (ESCs) established by the state.  

2.1 Test scores 

Our dependent variables are high-stakes reading and math tests known as the Texas Assessment of 

Knowledge and Skills (TAKS). Texas students were required to take the TAKS in the springs of 2010, 
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2011, and before. The reading TAKS was given in 3rd-9th grade, and the math TAKS was given in 3rd-

10th. TAKS was developed by Pearson Learning, which scaled scores using a one-parameter IRT model 

(DeMars, 2010). TAKS content was aligned with the state curriculum, and TAKS scores were more than 

80% reliable and correlated positively with course grades (Texas Education Agency, 2011). We 

standardized TAKS scores within grade and subject to facilitate interpretation and comparability.1  

2.2 TPPs and other teacher variables 

All student test scores were linked to the teacher who taught the tested subject in the year of the 

test. Students’ math scores were linked to their math teacher, and their reading scores were linked to 

their reading teacher. In elementary school, a student’s math and reading teacher were typically the 

same; in middle and high school, they were typically different.  

Teachers were linked to the TPP that certified them in the tested subject. In our math model, 

teachers were linked to the TPP that certified them to teach math, and in our reading model, teachers 

were linked to the TPP that certified them to teach reading. Teachers who were not certified in math or 

reading were dropped from the analysis. 

In addition to a teacher’s TPP, our analysis included indicators for whether each teacher was in 

their first, second, or third year of teaching. This control is important because teachers improve with 

early experience (Papay & Kraft, 2015; Wiswall, 2013), and the distribution of teacher experience may 

be different for new and expanding TPPs than it is for older, established ones. Because TPP effects fade 

with time (Goldhaber et al., 2013), Texas law does not hold TPPs accountable for teachers after three 

years in the classroom (Texas State Legislature, 2009). We therefore excluded from our analysis 

teachers with more than three years’ experience, as well as a few teachers who were certified before 

2005 but started teaching more recently. 
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2.3 Student variables 

Our models control for student-level covariates, including gender, race/ethnicity, limited English 

proficiency (LEP), and economic disadvantage (ED, which TEA defines as qualification for school meal 

subsidies or other public assistance). We also coded variables summarizing the cumulative number of 

years that a student spent in ED or LEP status. Other student variables included indicators for special 

education status and the setting in which a special education student received instruction (mainstream or 

separate); indicators for whether the student had skipped or repeated a grade in the past 2 years; a 

measure of absenteeism, defined as the percentage of school days that students attended the school 

where they were tested; and two measures of mobility between schools: the number of schools in which 

the student was enrolled over the past four years, and the percentage of school days that the student was 

enrolled at their current school during the year of the test.  

2.4 Classroom, school, and district variables 

In addition to student variables, student test scores can be influenced by peer, classroom, school, 

and district characteristics that are beyond teachers’ control. To capture those influences, we coded a 

number of classroom, school, and district variables. At the classroom level, we calculated the class size 

(number of students) as well as the percentage of students who were Hispanic, African American, ED, 

LEP, or in special education. We also calculated the average score of each classroom’s students on the 

prior year’s reading and math tests.  

At the school level, we calculated the percentage of students who were ED, LEP, Hispanic, 

African American, or in special education, as well as the percentage of students who were referred for 

disciplinary problems in the previous year. We include indicators for whether the school was rural or 

suburban rather than urban, and an indicator for charter schools. To measure staff stability, we 

calculated the school’s annual teacher turnover rate and the number of different principals who led the 
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school over the past four years. Finally, we include the percentage of the schools’ students who passed 

state reading and math tests, as well as indicators for how the school was rated in the state’s 

accountability system (exemplary, recognized, acceptable, unacceptable, with unrated as the omitted 

category). To avoid endogeneity, we lagged school pass rates and ratings by one year. 

At the district level, we used the percentage of the district’s budget that came from state rather than 

local funds. In Texas, as in many other states, state funding is larger in low-income districts (Corcoran, 

Evans, Godwin, Murray, & Schwab, 2004). We also include indicators for how the district was rated in 

the state’s accountability system (exemplary, recognized, acceptable, unacceptable, with unrated as the 

omitted category). To avoid endogeneity, we lagged the district rating by one year. 

3 Methods 

3.1 Model 

We fit a lagged-score value-added model, which regresses each student’s test scores on their prior 

scores, an indicator for each TPP, and covariates. Lagged-score models are increasingly popular for 

estimating teacher value-added, and can easily be extended to estimate the average value-added of 

teachers from different TPPs. The econometric justification for a lagged-score model is that lagged 

scores proxy for the cumulative effects of prior school and non-school inputs, and therefore adjust for 

nonrandom assignment of students to teachers from different TPPs (Guarino, Reckase, & Wooldridge, 

2014; Koedel, Mihaly, & Rockoff, 2015). Although the econometric assumptions of the lagged-score 

model are likely not perfectly met, simulations suggest that lagged-score models are more robust to 

nonrandom assignment than several other value-added models (Guarino et al., 2014). In addition, 

empirical results suggest that, at least in some data, lagged-score models can estimate teacher value-
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added with little bias (Chetty, Friedman, & Rockoff, 2014; Koedel, Mihaly, et al., 2015), although this 

claim has been challenged (Rothstein, 2014). 

Our model for value added to reading scores is 

ܴ݁ܽ݀௬௜ ൌ હ	ࡼࡼࢀ௧ ൅	ߚଵܴ݁ܽ݀௬ିଵ,௜ ൅ ௬ିଵ,௜݄ݐܽܯଶߚ
൅	ߚଷܴ݀ܽ݁ݔܽܯ௬ିଵ,௜ ൅ ௬ିଵ,௜݄ݐܽܯݔܽܯସߚ
൅	ࢼ૞࢚࢔ࢋࢊ࢛࢚ࡿ௜ ൅ 	௖࢓࢕࢕࢙࢙࢘ࢇ࢒࡯૟ࢼ
൅ࢼૠ࢘ࢋࢎࢉࢇࢋࢀ௧ ൅ ௦࢒࢕࢕ࢎࢉࡿૡࢼ ൅ ௗ࢚ࢉ࢏࢚࢙࢘࢏ࡰૢࢼ
൅݁௜ 

(1),

and our model for value added to math scores is the same with ݄ݐܽܯ௬௜ as the dependent variable. The 

structure of the error term ݁௜ can be modeled in several ways which we will discuss later. 

The dependent variable ܴ݁ܽ݀௬௜ (or ݄ݐܽܯ௬௜) represents the standardized score of individual 

student i on the reading (or math) test given in year y= 2011. The lagged scores ܴ݁ܽ݀௬ିଵ,௜ and 

 ௬ିଵ,௜ are the same student’s standardized scores on tests given in the prior year y–1=2010. Notice݄ݐܽܯ

that we use lagged scores from two different subjects, which reduces bias in estimating teacher value-

added (Koedel, Mihaly, et al., 2015). Using longer lags—e.g., scores from years y–2 and y–3—may 

reduce bias as well (Koedel, Mihaly, et al., 2015), but it also raises missing-data issues since many 

students lack scores at longer lags. In addition, since state testing begins in third grade, it is not possible 

to include lags of more than one year in the fourth-grade model, or lags of more than two years in the 

fifth-grade model. To adjust for ceiling effects, the model includes indicator variables ܴ݀ܽ݁ݔܽܯ௬ିଵ,௜ 

and ݄ݐܽܯݔܽܯ௬ିଵ,௜ to flag the 3.5 percent of students who achieved the maximum possible score on the 

2010 test. Other regressors include vectors of student, classroom, teacher, school, and district covariates, 

which we described in the Data section. An alternative to using school and district covariates is to use 

school fixed effects. But school fixed effects would reduce the analytic sample to 1st-3rd year teachers 

who work in the same schools as 1st-3rd year teachers from other TPPs. The reduction in the analytic 
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sample yields larger SEs, and potential for bias if the teachers and schools in the limited sample are not 

representative of the larger population (Mihaly et al., 2013). 

௧ is a column vector of indicators representing the P TPPs, and હࡼࡼࢀ ൌ ሾߙଵ …				ଶߙ  ௉ሿ is a rowߙ

vector representing the average value-added by teachers from each TPP. Because the model has an 

indicator for every TPP, it has no intercept, since an intercept would be collinear with the vector ࡼࡼࢀ௧. 

In effect each TPP has its own intercept. As a comparison to the TPP model in (1), we also fit a no-TPP 

model that had a single intercept and no TPP indicators. 

3.2 Estimates and contrasts 

From the TPP model, we get estimated TPP coefficients ߙො ൌ ሾߙොଵ ොଶߙ …  ො௉ሿ as well asߙ

contrasts Δߙ௣ ൌ ௣ߙ െ  ௣ andߙ ሻ which are defined as the difference between the pth TPP coefficientߙሺܧ

the average coefficient ܧሺߙሻ. ܧሺߙሻ can be estimated by the simple mean ߙത, the student weighted mean 

 :ത௦ଶߙ ത௡, or the precision-weighted meanߙ

തߙ ൌ
1
ܲ
෍ߙො௣

௉

௣ୀଵ

ത௡ߙ ൌ
∑݊௣ߙො௣
∑݊௣

	

ത௦ଶߙ ൌ
∑ ො௣ߙ௣ିଶݏ
∑ ௣ିଶݏ

 

(2) 

where np is the number of students taught by teachers from the pth TPP, and the precision ݏ௣ିଶ is the 

inverse of the squared SE. All three estimators are consistent, but ߙത௦ଶ is the most efficient, and ߙത௡ is 

similar. We will use the symbols Δߙො, Δߙො௡, Δߙො௦ଶ, respectively, for contrasts that use the simple mean, 

the student-weighted mean, or the precision-weighted mean. 
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The TPP estimates ߙො௣ have a covariance matrix ܸ whose diagonal terms are the squared standard 

errors ݏ௣ଶ ൌ  ො௣ሻ, p = 1,…,P.2 In large samples, the covariance matrix is practically the same for theߙଶሺܧܵ

estimates ߙො as for the contrasts Δߙො, Δߙො௡,  or Δߙො௦ଶ. 

We fit the models separately to each grade and to all grades together. In the all-grade model, we 

included grade indicators and let them interact with every regressor (except for the TPP indicators). 

These interactions allow for the possibility that the covariates had different coefficients in different 

grades. Similar all-grade TPP estimates can be obtained by averaging single-grade TPP estimates across 

grades. 

3.3 Clustering  

An important issue is that the residuals ݁௜ in equation (1) are correlated among students who are 

taught by the same teacher. One way to account for within-teacher correlation is to estimate clustered 

SEs. Clustered SEs work by calculating residuals around the OLS estimates, estimating the within-

cluster covariance matrix of the residuals, and using that matrix to estimate the SE. Past TPP research 

has recommended clustering at the teacher level (Koedel, Parsons, et al., 2015), but it is also plausible to 

cluster at a higher level such as the school, district, or TPP. In fact, it is common advice to cluster at the 

highest level possible (Cameron & Miller, 2015). Since clustered SEs can estimate arbitrary correlation 

structures, the idea is that clustering at higher levels (e.g., schools, districts, or TPPs) will pick up not 

just correlations at higher levels but correlations at lower levels (e.g., teachers) as well.  

There are some potential problems with using clustered SEs. One problem is that, if the residuals 

݁௜ are correlated, then OLS point estimates, though possibly unbiased, are not fully efficient. Another, 

more serious problem is that, if there are fewer than 40 clusters, clustered SEs are biased downward; that 

is, they tend to underestimate the true SEs (Cameron & Miller, 2015). In addition, with few clusters, 
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clustered SEs are extremely volatile (a.k.a., variable, noisy, inefficient) in the sense that they fluctuate 

dramatically from one sample to another (Bell & McCaffrey, 2002). 

In a TPP model, the bias and volatility of clustered SEs do not depend on the total number of 

clusters; instead they depend on the number of clusters in each TPP. What this means is that, while 

teacher-clustered SEs may be reasonably accurate for large TPPs, teacher-clustered SEs will be biased 

and volatile for TPPs with fewer than 40 teachers. With fewer than 40 teachers, school- or district-

clustered SEs will also be biased and volatile, since if a TPP has fewer than 40 teachers, those teachers 

will certainly be in fewer than 40 schools and fewer than 40 districts. TPP-clustered SEs may be 

especially biased and volatile, since the SE of each TPP coefficient is estimated from a single cluster. 

To address the bias and volatility of clustered SEs, a variety of methods have been developed, 

including bias reduced linearization and the wild cluster bootstrap (Bell & McCaffrey, 2002; Cameron, 

Gelbach, & Miller, 2008). We investigated these methods, but they did not solve our problem. First, as a 

practical matter, the available software implementations could not handle a dataset and model as large as 

ours. Second, even if the software could handle our data, it would not eliminate the problems of bias and 

volatility in SEs. The wild cluster bootstrap corrects significance levels but does not reduce bias or 

volatility in SEs (Cameron et al., 2008). Bias reduced linearization reduces bias but increases volatility 

(Bell & McCaffrey, 2002; McCaffrey, personal communication, June 10, 2015).  

3.4 Random effects 

An alternative to clustered SEs is to model the correlated errors with teacher random effects (RE). 

A teacher RE model splits the residual into two components ݁௜ ൌ ௧ݎ ൅  ௧ is the teacher RE andݎ ௜, whereݑ

 ௜ is the student residual. The RE model makes more assumptions than an OLS model with clusteredݑ

SEs. While the clustered SE model makes no assumptions about the within-teacher covariance matrix, 

the teacher RE model assumes that, within teachers, ݁௜ has a simple exchangeable correlation structure 
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with an intraclass correlation of ߩ ൌ ௥ଶߪ௥ଶ/ሺߪ ൅  .௜ݑ ௧ andݎ ௨ଶ are the variances ofߪ ௥ଶ andߪ ௨ଶሻ, whereߪ

Typically RE models also assume that ݎ௧ has a normal distribution, but RE estimates are often robust to 

non-normality (McCulloch & Neuhaus, 2011). 

The choice between REs and clustered SEs hinges on the RE assumptions and the size of the TPPs. 

If the RE assumptions are met, even approximately, then RE point estimates will be more efficient than 

OLS estimates, and RE SEs will be less biased (and less volatile) than clustered SEs, at least in small 

TPPs (Green & Vavreck, 2008). On the other hand, if the RE assumptions are badly violated, then OLS 

estimates with clustered SEs may be preferable, at least for large TPPs. 

Above the teacher level, we can add school or district REs to get a multilevel or hierarchical linear 

model (HLM) with REs at two or three nested levels (Raudenbush & Bryk, 2001). An HLM with 

teacher and school REs has been used to estimate TPP coefficients in Louisiana (Gansle et al., 2012). 

The decision of whether to add a level of REs can be made with the likelihood ratio test 

ோாܴܮ ൌ 2ሺℓଵ െ ℓ଴ሻ (3) 

where ℓଵ and ℓ଴ are the likelihoods with and without the added level of REs. For example, the LRRE test 

can be used to choose between an OLS model and a model with teacher REs, or between a model with 

teacher REs and a model with teacher and school REs, or between a model with teacher and school REs 

vs. a model with teacher, school, and district REs.  

Because REs cannot have negative variance, the ܴܮோா test is one-sided (e.g., ܪଵ: ௥ଶߪ ൐ 0 vs 

:଴ܪ ௥ଶߪ ൌ 0). To get the p value for an ܴܮோா test, we first calculate a p value from a ߯ଵ
ଶ distribution, and 

then cut that p value in half (LaHuis & Ferguson, 2009; Stram & Lee, 1994).3  

3.5 Multiple comparisons 

It is common to plot all the TPP contrasts Δߙො௣ with ordinary 95% pointwise CIs. And it is 

common to eyeball the CIs to see which ones do not cover zero, and interpret those TPPs as significantly 



Teacher Preparation Programs—16 

 

different from the mean. This is equivalent to testing at a .05 significance level each of the P hypotheses 

:଴ܪ Δߙ௣ ൌ 0, p=1,…,P. 

The problem with this approach is that it makes multiple comparisons (Hsu, 1996). In Texas, for 

example, there are approximately P=100 different TPPs, and if we test each of them using a .05 

significance level (or a 95 percent CI), we would expect to conclude that approximately five differ 

significantly from the average—even if all are in fact identical.4  

The simplest adjustment for multiple comparisons is the Bonferroni correction. Under the 

Bonferroni correction, we test at a significance level of .05/P or, equivalently, construct CIs with a 

confidence level of (1–.05/P)x100 percent. This keeps the familywise error rate to five percent, meaning 

that, if all TPPs were identical, there would be approximately a five percent chance of erroneously 

concluding that at least one TPP differed from the average. 

The Bonferroni correction is conservative, and less conservative corrections are available, 

including one that is tailored for our exact problem of making multiple comparisons with the mean 

(Fritsch & Hsu, 1997). But if the numbers of TPPs and teachers are large, as they are in Texas, the exact 

correction is practically indistinguishable from the Bonferroni correction, which is much easier to 

calculate. For example, with ܲ ൒ 20 TPPs and at least five teachers per TPP, the 95 percent Bonferroni 

intervals are only 0.3 percent wider than the exact intervals (Fritsch & Hsu, 1997). Our results use the 

Bonferroni correction; using the exact correction would not visibly change the results. 

3.6 Definitions: Heterogeneity and reliability, homogeneity and the null distribution 

The differences among the TPP point estimates are due partly to true heterogeneity between 

teachers from different TPPs, and partly to noise, or error in the estimates. The variance of the TPP 

estimates ߙො௣ can be decomposed as follows 
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ܸ൫ߙො௣൯ ൌ ߬ଶ ൅  ଶ (4)ߪ

where ߬ଶ ൌ ܸ൫ߙ௣൯ is the heterogeneity variance and ߪଶ ൌ ܧ ቀܸ൫ߙො௣ െ  ௣൯ቁ is the average variance ofߙ

the estimation errors. Then the fraction of variance in ߙො௣ that is due to heterogeneity rather than error is 

ߩ ൌ
߬ଶ

߬ଶ ൅ ଶߪ
 (5). 

We call ߩ the reliability of the estimates ߙො௣. Note that, for a given amount of estimation error, more 

heterogeneous estimates will also be more reliable. 

If there is no heterogeneity, then the TPPs are homogeneous and their estimates are completely 

unreliable; they differ from one another only because of estimation error. The null hypothesis of 

homogeneity can be defined in several equivalent ways: 

:଴ܪ ଵߙ ൌ ଶߙ ൌ ⋯ ൌ ௉ߙ
or	ܪ଴: ߬ଶ ൌ 0
or	ܪ଴: ߩ ൌ 0 

(6) 

Under H0, the estimates Δߙො௣ would still vary because of estimation error. The distribution of 

estimates under H0 is the null distribution ࣞ଴, and we can describe ࣞ଴ as follows. Under H0, each Δߙො௣ 

would have an asymptotic normal distribution with a mean of zero and a variance estimated by ̂ݏ௣ଶ, 

p=1,…,P. It follows that ࣞ଴ is an equal mixture of P independent5 normal distributions with means of 

zero and different variances. We can approximate this mixture using a simple procedure described in 

this footnote.6 Under H0, the TPP contrasts Δߙො௣ would approximate the (P+1)-quantiles from ࣞ଴ (e.g., 

the deciles if P=9, or the percentiles if P=99). We call these the null quantiles, or noise quantiles.  

By plotting the noise quantiles over the observed Δߙො௣ values, we can visually compare the 

observed distribution to the noise distribution. If the observed distribution and the noise distribution are 

similar, we can conclude that most of the variation in the estimates is due to noise. If the observed 
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distribution is more dispersed than the noise distribution, we have evidence that signal is present and 

may be able to highlight specific TPPs as exceptional. 

3.7 Tests and estimates of heterogeneity and reliability 

How can we test the null hypothesis of homogeneity and estimate the heterogeneity variance ߬ଶ 

and the reliability ߩ?  

3.7.1 Using TPP point estimates 

The simplest approach is to compare different point estimates of the same TPP coefficients. From 

our models we get TPP point estimates for different subjects (reading, math), and for different grades 

(4th-9th in reading, 4th-10th in math). We could also get TPP point estimates for different cohorts of 

teachers. In different data, we could get estimates for different school years. 

If we have two sets of independent and exchangeable TPP estimates, then the correlation between 

them estimates the reliability ߩ, and the covariance estimates the heterogeneity variance ߬ଶ. If the 

correlation (and covariance) are significantly greater than zero, then we can reject the null hypothesis of 

homogeneity. 

If we have more than two sets of TPP estimates, then bivariate correlation generalizes to the 

intraclass correlation, which can be estimated using analysis of variance (ANOVA). With J independent 

estimates for each TPP, the ANOVA model is 

Δߙො௣௝ ൌ Δߙ௣ ൅  ,௣௝ (7)ݑ

where Δߙො௣௝ is the jth estimated contrast for TPP p in grade g, Δߙ௣ is the true contrast, and ݑ௣௝ is random 

estimation error. The null hypothesis of homogeneity is tested by the ANOVA F statistic, which we call 

ூ஼஼. Standard ANOVA formulas7 (Fisher, 1925) give the between-group variance, which we call ߬̂ூ஼஼ܨ
ଶ  

and interpret as an estimate of the heterogeneity variance. Standard formulas also give the intraclass 
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correlation r, which estimates the reliability of a single TPP estimate. If J TPP estimates are averaged 

together—for example, if we average TPP estimates across grades—then the reliability of the average is 

estimated by (Winer, Brown, & Michels, 1991).  

ො୍େେߩ ൌ
ݎܬ

1 ൅ ሺܬ െ 1ሻݎ
 (8) 

These formulas assume that the TPP estimates are independent and exchangeable. If estimates are 

not independent, then the formulas will overestimate both heterogeneity and reliability, and we will 

reject the null hypothesis of homogeneity more often than we should. For example, independence is 

violated if we have TPP estimates for two different school years, but many of the teachers are the same 

in both years. 

If estimates are independent but not exchangeable, the consequences are less dire. Reliability will 

be underestimated, but we can still reject the null hypothesis if the estimated reliability is significantly 

greater than zero. For example, reading and math estimates are not exchangeable if TPPs are more 

heterogeneous in math than in reading, or if some TPPs’ reading teachers are better or worse than their 

math teachers. In that case, the correlation between reading and math estimates will be lower than the 

reliability of either set of estimates considered by itself, and the covariance between the reading and 

math estimates will lie somewhere between the heterogeneity of the reading estimates and the 

heterogeneity of the math estimates. 

The assumptions of independence and exchangeability are more plausible when we are comparing 

estimates for the same subject in nearby grades. For example, 4th and 5th grade math teachers from the 

same TPP are both independent and exchangeable. 4th and 10th grade math teachers from the same TPP 

are also independent, but may not be exchangeable if they are trained differently or if different skills are 

needed to teach math in 4th vs. 10th grade. 
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3.7.2 Using SEs 

If we need to assess the heterogeneity and reliability of a single set of TPP estimates, then the 

point estimates by themselves are not sufficient. We also need the SEs or a related statistic, such as the 

log likelihood. This makes our estimates of heterogeneity and reliability somewhat sensitive since, as we 

discussed earlier, the SEs and likelihood can be estimated in different ways and from different models.  

We use several statistics to test the null hypothesis of homogeneity. The likelihood ratio statistic 

 :௉௉ compares the log-likelihoods ℓ of the TPP and no-TPP models்ܴܮ

௉௉்ܴܮ ൌ 2ሺℓ்௉௉ െ ℓ௡௢்௉௉ሻ (9) 

The Wald statistic W compares the contrasts to their estimated covariance matrix ෠ܸ :  

ܹ ൌ Δߙො௡ ෠ܸିଵΔߙො௡் (10), 

The Cochran statistic Q compares the contrasts to their estimated standard errors, whose squares ̂ݏ௣ଶ are 

on the diagonal of ෠ܸ : 

ܳ ൌ Δߙො௦ଶ ቀ݀݅ܽ݃൫ ෠ܸ൯ቁ
ିଵ
Δߙො௦ଶ

୘

ൌ ෍
Δߙො௦ଶ,௣

ଶ

௣ଶݏ̂

௉

௣ୀଵ

 

(11) 

Under the null hypothesis of homogeneity, LRTPP, W, and Q all follow a ߯௉ିଵ
ଶ  distribution if the sample 

is large and the model is correctly specified. Q has long been used in meta-analysis (Cochran, 1954), and 

was recently introduced to the teacher and TPP literatures (Koedel, 2009; Koedel, Parsons, et al., 2015). 

W has also been used in the TPP literature (Koedel, 2009; Koedel, Parsons, et al., 2015),8 as has its 

transformation, the regression F statistic ܨ௥௘௚ ൌ ܹ/ሺܲ െ 1ሻ (Goldhaber et al., 2013). 

Q is the most convenient statistic. It uses a scalar formula, widely implemented in meta-analysis 

software, which can be easily calculated from a regression table reporting TPP estimates and SEs. Q is 
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suitable for secondary analysis of TPP estimates reported by others, and it can be applied to a subset of 

TPP estimates—e.g., estimates for only the largest TPPs. 

W is a little less convenient. It is a matrix formula that requires the off-diagonal elements of ෠ܸ , so 

it cannot be calculated from the estimates and SEs in a regression table. But W is often provided 

conveniently by software such as the contrast postestimation command in Stata. 

The LRTPP statistic is the least convenient. One inconvenience is that LRTPP cannot be used with 

clustered SEs, because the calculation of the likelihood ignores the clustering. Another inconvenience is 

that, unlike the W and Q statistics, the LRTPP statistic applies to the whole model and cannot be 

calculated from a subset of estimates—e.g., only the estimates for large TPPs. If you want to calculate 

LRTPP for a subset of TPPs, you have to limit the data to those TPPs and refit both the TPP model and 

the no-TPP models to get their respective likelihoods. 

The Q statistic can be transformed into an estimate of reliability: 

ොொߩ ൌ max ൬0, 1 െ
ܲ െ 1
ܳ

൰ (12) 

This reliability estimate is widely used in meta-analysis, where is it called I2 and comes with a test-based 

CI (Higgins & Thompson, 2002; von Hippel, 2015). It was recently introduced to the teacher and TPP 

literatures (Koedel, 2009; Koedel, Parsons, et al., 2015). 

The heterogeneity variance can be estimated as the difference between the variance of the 

estimates and the variance of the null distribution.  

߬̂ு
ଶ ൌ max ቀ0, ෠ܸ൫ߙො௣൯ െ ෠ܸሺࣞ଴ሻቁ

where	 ෠ܸሺࣞ଴ሻ ൌ
1
ܲ
෍̂ݏ௣ଶ		

and	 ෠ܸ൫ߙො௣൯ ൌ
1

ܲ െ 1
෍൫ߙො௣ െ ൯ߙ

ଶ
 

(13) 
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This estimator has long been used in meta-analysis (Hedges, 1983), and was recently introduced to the 

teacher and TPP literatures (Aaronson, Barrow, & Sander, 2007; Koedel, 2009; Koedel, Parsons, et al., 

2015). 

Another heterogeneity statistic that is used in meta-analysis is (DerSimonian & Laird, 1986) 

߬̂஽௅
ଶ ൌ maxቆ0,

ܳ െ ሺܲ െ 1ሻ
∑ ௣ିଶݏ̂ 	െ ∑ ∑/௣ିସݏ̂ ௣ିଶݏ̂

ቇ  (14) 

In the TPP literature, another estimate of the heterogeneity variance is ߬̂ா஻
ଶ , which is the variance 

of the empirical Bayes (EB) contrasts Δߙ෤௣ (Boyd et al., 2009; Goldhaber et al., 2013). The EB contrasts 

shrink the contrasts Δߙො௣ by an estimate ߩො௣ of their reliability (Merrmann, Walsh, Isenberg, & Resch, 

2013): 

Δߙ෤௣ ൌ ො௣ߙො௣Δߩ

where	ߩො௣ ൌ
߬̂ଶ

߬̂ଶ ൅ ௣ଶݏ̂
 

(15) 

Note that the shrinkage factor ߩො௣ estimates the reliability of the individual contrast Δߙො௣, which is 

different from the overall reliability ߩ of all the contrasts together. Note also that the calculation of ߩො௣ 

requires some prior estimate ߬̂ଶ of the heterogeneity variance; we use ߬̂஽௅
ଶ .  

Any estimate of heterogeneity ߬ଶ implies an estimate of reliability ߩ, and vice versa, through the 

relationship ߩ ൌ ߬ଶ/ ෠ܸ൫ߙො௣൯. For example, the reliability estimate ߩොொ implies the following heterogeneity 

estimate: ߬̂ொ
ଶ ൌ ොொߩ ෠ܸ൫ߙො௣൯. Likewise the heterogeneity estimate ߬̂ு

ଶ  implies a reliability estimate ߩොு ൌ

߬̂ு
ଶ/ ෠ܸ൫ߙො௣൯. The estimates ߬̂ொ

ଶ  and ߩොு have been used in the teacher and TPP literatures (Koedel, 2009; 

Koedel, Parsons, et al., 2015). 
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4 Results 

4.1 Illustrative TPP estimates 

Figure 1 displays caterpillar plots of TPP contrasts from our all-grade teacher RE models, with 

95 percent pointwise CIs and a reference line at the average of zero. Caterpillar plots are a common way 

to present estimates, and at first glance Figure 1 might seem to offer a lot of information about the 

differences between TPPs. But in fact the differences between TPP estimates are mostly noise.  

Figure 1 demonstrates the noisiness of the estimates explicitly by overlaying the null distribution, 

which shows what the distribution of TPP contrasts would look like if there were no true differences 

between TPPs and nothing but estimation error were present. In Figure 1, the null distribution is only a 

little less dispersed than the observed TPP distribution, suggesting that the observed distribution 

contains a lot of noise and only a little signal. 

Both the observed distribution and the null distribution have a sideways S shape. In the value-

added community, a sideways S is sometimes interpreted as meaning that most TPPs are very similar, 

while a few, in the tails, are very bad or very good. But clearly that interpretation is wrong if the null 

distribution, which assumes no TPP differences, has a similar S shape. The reason for the null 

distribution’s S shape is that estimation error has a normal mixture distribution, and the cumulative 

distribution function for a normal mixture is S-shaped. The null distribution is uncannily similar to the 

observed distribution of TPP estimates. Only on the far right of the math caterpillar plot, and only in the 

extremes of the reading caterpillar plot, are the observed TPP estimates noticeably more dispersed than 

the null distribution. 

To decide whether a TPP is significantly better or worse than average, it is common to plot a 95 

percent pointwise CI around each estimate. Figure 1 does this, but the practice is misleading. It is 

tempting to infer that a TPP is different from average if its pointwise CI does not cross the reference 
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line, but this is not necessarily the case. Even if there were no true differences between TPPs, 5 percent 

of 95 percent pointwise CIs—or about 9-10 of the 187 intervals in Figure 1—would not cross the 

reference line. This is the problem of multiple comparisons.  

To correct for multiple comparisons, Figure 1 includes 95 percent Bonferroni CIs that adjust for 95 

comparisons in math and 92 comparisons in reading. Looking for Bonferroni intervals that do not cross 

the reference line, we conclude that no TPPs are significantly different from average in math, and only 

one TPP is significantly better than average in reading. Note that the significant reading estimate does 

not have the largest point estimate in the caterpillar plot. Instead, it has the 6th largest positive point 

estimate and the 12th smallest SE. 

4.2 Model sensitivity 

The estimates in Figure 1 came from a teacher RE model, and some of our conclusions would 

change if we fit a different model. a summarizes the distribution of TPP point estimates, SE estimates, 

and CIs under different OLS and RE models.  

The point estimates are fairly robust to model choice. According to Table 3a, the correlation between 

OLS and RE point estimates is .88-.89 in math and .95-.97 in reading. The standard deviation (SD) of 

the TPP point estimates is also very similar, regardless of which model is chosen. 

The estimated SEs are more sensitive to model specification. At the top of Table 3a, we have OLS, 

which substantially underestimates the SEs because it fails to account for residual correlation, especially 

at the teacher level. Lower in the table, we account for teacher-level correlation by using teacher 

clustering or teacher REs. Both options substantially increase the SE estimates. Teacher-clustered SEs 

are 87% larger than OLS SEs in math and 44% larger than OLS SEs in reading. The SEs from a teacher 

RE model are even larger—117% larger than OLS SEs in math, and 52% larger than OLS SEs in 

reading. 
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Why are estimated SEs larger with teacher REs than with teacher clustering? The reason is that 

teacher-clustered SEs are negatively biased for the half of TPPs that have fewer than 40 teachers 

(Cameron & Miller, 2015). For these small TPPs, clustered SEs are not just biased, but also volatile 

(Bell & McCaffrey, 2002). Figure 2 shows how SE estimates change with TPP size. With teacher REs, 

SE estimates decrease smoothly with the inverse square root of the number of teachers. But teacher-

clustered SEs, in addition to being too small on average, are extremely volatile and do not decrease 

smoothly with sample size until the number of teachers goes above 40. With more than 40 teachers, the 

differences between teacher-clustered SEs and SEs from a teacher RE model become inconsequential. 

Clustering at higher levels does not improve the negative bias of clustered SEs; in fact, clustering 

at higher levels can worsen the bias by reducing the number of clusters. This is evident in Table 3a. 

With TPP clustering there is only one cluster per TPP, and the resulting SE estimates are so negatively 

biased that they are actually smaller than OLS SEs. With school clustering, SEs are about the same bias 

as they have with teacher clustering, because a small TPP will typically place each of its teachers in a 

different school. District-clustered SEs are a little smaller, with a little more negative bias than teacher- 

or school-clustered TPPs, because it is not uncommon for a TPP to place several teachers in the same 

large district. 

Table 3a shows that adding REs at the school and district levels has little effect on the SE 

estimates, but slightly shrinks the dispersion of the point estimates. This is probably because RE point 

estimates are a compromise between OLS and fixed effects (FE) estimates, so that RE estimates remove 

from the point estimates some of the between-school and between-district variation that is not explained 

by covariates (Greene, 2011; Wooldridge, 2001).  

Even small differences between estimates from different models can affect our conclusions about 

which TPPs are different. We will of course get too many spuriously significant differences if we 
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neglect the Bonferroni correction, or if we fit a model that yields very biased SEs (e.g., OLS or TPP 

clustering). But even Bonferroni intervals from plausible clustered or RE models can differ in their 

implications. For example, Bonferroni tests using clustered SEs at the teacher, school, or district levels 

suggest that 2-4 TPPs are significantly different from average in reading and 1-3 are significantly 

different in math. But Bonferroni tests from RE models suggest that zero TPPs are significantly different 

in reading and 0-1 are significantly different in math. 

Given the sensitivity of TPP estimates to model specification, it would be helpful to have evidence 

regarding which models are, in some sense, better. Figure 2 provided some evidence by reminding us 

that teacher-clustered SEs are biased and volatile in smaller TPPs. This is one reason to favor an RE 

model if a state plans to include smaller TPPs in its accountability system. 

If an RE model is chosen, then Table 4 suggests that it is better to use a model with school and 

possibly district REs as well as teacher REs. Each level of RE has a SD that is significantly greater than 

zero, and ܴܮோா tests show that each level of RE significantly improves the fit of the model. A model 

with teacher REs fits significantly better than an OLS model; a model with teacher and school REs fits 

significantly better than a model with teacher REs alone; and a model with teacher, school, and district 

REs fits significantly better than a model with only teacher and school REs. The school REs are 

comparable in size to the teacher REs, but the district REs are considerably smaller. Models with school 

and district REs yield larger and more accurate SE estimates for school and district covariates, and may 

affect TPP estimates when there are multiple teachers in the same school or districts. a, however, 

suggests that the -school and district REs change the TPP estimates very little. 

(The model chosen has implications not just for the TPP estimates, but for the time that it takes to 

obtain them. Applying Stata to our data, we can obtain OLS point estimates in 1-2 minutes, but clustered 
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SEs take about half an hour, and RE estimates take 3-11 hours. Evaluators who favor RE models should 

consider HLM software, which fits RE models to large datasets much more quickly than Stata or SAS.) 

4.3 Limiting accountability to large TPPs 

Both policy and statistical arguments can be made for limiting accountability to large TPPs. One 

statistical argument is that it is difficult to estimate the coefficients of small TPPs precisely, and some 

estimation methods, such as clustered SEs, are biased and volatile in small TPPs. If clustered SEs are 

used, a plausible policy is to limit accountability to TPPs with at least 40 teachers; if RE models are 

used, then accountability may be extended to somewhat smaller TPPs. Another statistical argument for 

limiting accountability to large TPPs is that it reduces the number of TPPs that must be compared, and 

thatat reduces the multiple comparisons problem. It is still necessary to correct for multiple comparisons, 

but the corrected CIs will be narrower if there are fewer comparisons to correct for. 

A policy argument for limiting accountability to larger TPPs is simply that larger TPPs affect more 

students. For example, if two TPPs, one large and one small, are certifying equally poor teachers, we can 

have greater impact by shutting down the large TPP than by shutting down the small one. Conversely, if 

a large and small TPP are certifying equally good teachers, then the larger TPP may find it easier to 

expand.  

One argument against focusing on large TPPs is that smaller TPPs may be more heterogeneous. If 

smaller TPPs are more heterogeneous, then an accountability system that looks for large TPPs whose 

teachers are slightly above average may miss a small TPP whose teachers are truly extraordinary. On a 

per-child basis, a small number of extraordinary teachers may have impact as great as a large number of 

teachers who are barely above average.  
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Table 3b summarizes the point estimates, SEs, and CIs for TPPs with at least 40 reading or math 

teachers in our data. These larger TPPs represent only 40-50 percent of the TPPs in Texas, but they train 

80 percent of the state’s new teachers.  

Compared to the SEs for small TPPs, the SE estimates for large TPPs are smaller and less sensitive 

to model specification. The OLS and TPP-clustered SEs still have a severe negative bias, but the SEs 

from other models are approximately unbiased and agree closely with one another. This is partly 

because clustered SEs have little bias when the number of clusters is large. 

Despite the smaller, less sensitive SEs of large TPPs, and despite the fact that a sample limited to 

large TPPs has fewer comparisons to correct for, it remains difficult to single out specific TPPs as 

significantly different from average. If we limit our attention to plausible models (excluding OLS and 

TPP clustering), we find that Bonferroni tests flag few if any large TPPs as significantly different. Under 

some model specifications, no large TPPs are significantly different, and under other specifications only 

1-2 large TPPs are significantly different. 

A possible reason for the rarity of significantly differences among large TPPs is that the 

coefficients of large TPPs, though more precisely estimated, may be less heterogeneous. We will find 

some evidence that large TPPs are less heterogeneous in the next section. 

4.4 Heterogeneity and reliability 

In light of our difficulty highlighting individual TPPs that are significantly different, one might 

begin to doubt that there are any teacher quality differences between TPPs at all. In fact, there are 

differences, but they are very small, especially among large TPPs, and they are not very reliably 

estimated. We estimate heterogeneity and reliability in this section.  
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4.4.1 Using point estimates 

The most robust way to estimate reliability and heterogeneity is to look at the correlation and 

covariance between TPP point estimates. As we have seen, TPP point estimates are less sensitive to 

model specification than are SE estimates. If we get point estimates using OLS, the point estimates do 

not change if we cluster the SEs. If we get point estimates using an RE model, the point estimates are 

strongly correlated with the OLS point estimates. 

Table 5a gives the correlation between the reading and math point estimates for all 87 TPPs that 

have estimates in both subjects. The correlation is statistically significant and about 0.4, indicating that 

the estimates are about 40% reliable. Table 5a also reports the square root of the covariance, which is an 

estimate the heterogeneity SD. The estimated heterogeneity SD is 0.04, which indicates that a 1 SD 

increase in TPP quality predicts a 0.04 SD increase in student test scores. These estimates of reliability 

and heterogeneity change very little with model specification. 

Table 5b gives the same statistics for large TPPs. One might expect large TPP estimates to be more 

reliable, but they are not; the correlation between reading and math estimates is no stronger for large 

TPPs than it is for all TPPs together. This is because the heterogeneity SD, which was 0.04 for all TPPs, 

is just 0.015-0.019 for large TPPs. In other words, although estimates for large TPPs have less noise, 

they also have less signal, so on balance the ratio of signal to noise is no better for large TPPs than it is 

for other TPPs. 

Instead of comparing estimates across subjects, we can compare estimates for the same subject 

across different grades. Table 6a gives the resulting estimates of reliability and heterogeneity for all 

TPPs. In math, the estimates, averaged across grades 4-10, are about 40% reliable and have a small but 

significant heterogeneity SD of 0.03. In reading, the estimates across grades 3-9 are about 30% reliable 

and have a small but significant heterogeneity SD of 0.02. Again, these estimates change little with 

model specification. 
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Table 6b gives the same estimates for large TPPs. Again, the results suggest that there is less 

heterogeneity among large TPPs than among small ones. The all-grade estimates are just 14-37% 

reliable. They have an estimated heterogeneity SD of just 0.01-0.02, and under two model 

specifications, we cannot reject the hypothesis that there is no heterogeneity at all. In reading, reliability 

is estimated at about 10%, the heterogeneity SD is estimated at 0.01, and there is no model specification 

where we can reject the null hypothesis that there is no heterogeneity at all. 

4.4.2 Using SE estimates 

Instead of comparing different sets of TPP point estimates, we can test for heterogeneity by 

comparing a single set of point estimates to their SEs (the Q statistic) or to their covariance matrix (the 

W statistic). Or we can calculate the increase in log likelihood when TPP indicators are added to the 

model (the LRTPP statistic).  

Table 7 displays the LRTPP, Q and W tests of homogeneity among all TPPs, as well as the Q test for 

large TPPs. Among all TPPs, the tests reject the null hypothesis of homogeneity except when there are 

district REs. Among large TPPs, the Q test rejects the null hypothesis except when there are school REs 

or school and district REs. The LRTPP and Q statistics are practically identical, but the LRTPP statistic 

cannot be used with clustering. The W statistic is similar except when there is clustering at the district or 

TPP level. With TPP clustering, the value of W seems implausibly large. Since the only material 

difference between the Q and W formulas is that W uses the off-diagonal elements of the covariance 

matrix ෠ܸ , those off-diagonal elements must account for the large W values with district or TPP 

clustering. We speculate that the off-diagonal elements are very imprecisely estimated. 

All of the test statistics in Table 7 are sensitive to model specification, returning values that are too 

large when the estimated SEs are too small. In particular, if we use OLS or TPP clustering, the SEs are 

substantially underestimated, so the test statistics are much too large. Similarly, if we use teacher, 
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school, or district clustering, the SEs are slightly underestimated in small TPPs, so the test statistics are a 

bit too large unless we limit the estimates to large TPPs. The sensitivity of the statistics in Table 7 

contrasts with the robustness of the statistics in Table 5 and Table 6, where test statistics were 

approximately the same regardless of model specification. The robustness of the statistics in Table 5 and 

Table 6 results from the fact that they use only the point estimates, ignoring the more sensitive SEs and 

likelihood. 

Table 8 gives estimates of reliability and heterogeneity obtained from estimators that compare the 

SEs to the point estimates. These estimates are quite sensitive to model specification, returning values 

that are too large when the estimated SEs are too small. In addition, even when they use the same SEs, 

the estimators often disagree; in particular, the estimators subscripted with H and Q return larger 

estimates of heterogeneity and reliability than the estimators subscripted with DL and EB.9 

Disagreement among plausible heterogeneity estimators is common (Langan, Higgins, & Simmonds, 

2015) and increases uncertainty about how much heterogeneity is actually present. However, all of the 

estimators agree that the extent of heterogeneity is small. 

If we focus on the RE models, which previous results suggest provide the best fit and the least 

biased SEs, the results suggest that TPP estimates are 0-50 percent reliable, and have a heterogeneity SD 

of 0-0.05 in math and 0-0.03 in reading. The estimates for large TPPs are less heterogeneous, and no 

more reliable, than the estimates for all TPPs. These conclusions are broadly compatible with the 

conclusions that we reached by comparing point estimates in Table 5 and Table 6. 
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5 Conclusion 

5.1 How large are TPP differences? How reliable? Which TPPs are different? 

In the introduction we argued that, for TPP accountability to increase student performance, several 

conditions must be met.  

1. The differences between TPPs must be consequential. 

2. It must be possible to estimate those differences reliably. 

3. It must be possible to single out individual TPPs that are better or worse than average.  

We can now assess those conditions by answering the three questions in the title 

Question 1. How large are the differences between TPPs? While most of our results suggest that 

real differences between TPPs exist, the differences are not large. Our estimates vary a bit with our 

statistical methods, but averaging across plausible methods we conclude that between TPPs the 

heterogeneity SD is about 0.03 in math and 0.02 in reading. That is, a 1 SD increase in TPP quality 

predicts just a 0.03 SD increase in student math scores and a 0.02 SD increase in student reading scores. 

Under some plausible methods, the heterogeneity SD is as large as 0.05 in math and 0.03 in reading, but 

under other methods the heterogeneity SD is indistinguishable from 0.  

Teacher quality differences between TPPs are not large. For comparison, using the same value-

added model, we estimate that the average difference between 1st and 2nd year teachers is 0.04 SD in 

student math scores and 0.03 SD in student reading scores. So a 2nd year teacher from an average TPP is 

probably better than a 1st year teacher from a good TPP.  

Question 2. How reliable are TPP estimates? Even if the differences between TPPs were large 

enough to be of policy interest, accountability could only work if TPP differences could be estimated 

reliably. And our results raise doubts that they can. Every plausible analysis that we conducted 

suggested that TPP estimates consist mostly of noise. In some analyses, TPP estimates appeared to be 
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about 50 percent noise; in other analyses, they appeared to be as much as 80 or 90 percent noise. The 

estimates were noisy despite our Texas-sized sample. Even in large TPPs the estimates were mostly 

noise, because the differences between large TPPs, though more precisely estimated, were also smaller 

than the differences between small TPPs.  

It is plausible, though it needs to be assessed empirically, that our TPP estimates would grow more 

reliable if we had more than one year of data. In addition, having multiple years of data would allow us 

to estimate reliability not just between subjects and grades but between years as well. To ensure that 

estimates from different years were independent, we would have to subset the data to ensure that we 

were looking at different teachers in each year. 

But if several years of data are required to obtain reliable TPP estimates in Texas, what does that 

imply for other states? A mid-sized state like Missouri would require 5 years to accumulate the amount 

of data that we can get from a single year in Texas. 

Uncertainty about TPP estimates is substantial. The estimates are noisy even if we settle on a 

single model, and there is also uncertainty about which model to fit. While all TPP evaluations to date 

have used a lagged-score value-added model, evaluators have differed with respect to decisions about 

clustering and REs, and we have shown that those decisions have some consequences for TPP point 

estimates and SEs, especially in small TPPs. TPP estimates change even more if a model includes school 

FEs (Mihaly et al., 2013). In addition, different evaluations have used different sets of covariates, and 

the selection of covariates can change the distribution of TPP estimates (Lincove et al., 2014).  

Finally, it is possible that TPP estimates are not just unreliable but also slightly biased. Possible 

sources of bias include model misspecification and nonrandom assignment of students to teachers from 

different TPPs. While the biases of lagged-score value-added models are small when compared to 

differences between teachers (Chetty et al., 2014; Koedel, Mihaly, et al., 2015), the differences between 
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individual teachers are substantial. Biases that seem small when compared to teacher effects may seem 

larger when compared to the small differences between TPPs.  

Question 3. Which TPPs are different? Even if we are willing to accept the estimates from a single 

model, it remains hard to single out the specific TPPs that are different. It is not just that TPP differences 

are small and our estimates of them are uncertain—there is also the problem of multiple comparisons. 

Before we correct for multiple comparisons, many TPPs appear significantly different, but after we 

correct for multiple comparisons, just 0-2 TPPs appear significantly different from the average. If we 

restrict accountability to large TPPs, we have fewer comparisons to make, but it is no easier to detect 

significant differences because large TPPs, at least in Texas, are very similar in teacher quality.  

We can radically reduce the number of comparisons if we combine TPPs and ask broader 

questions, such as whether alternative TPPs produce better teachers than traditional TPPs (Kane, 

Rockoff, & Staiger, 2008), whether for-profit TPPs produce better teachers than nonprofit TPPs 

(Lincove, Osborne, Mills, & Bellows, 2015), or whether TPPs that involve students in teaching practice 

produce better teachers than TPPs that don’t (Boyd et al., 2009). These are fine questions, but from a 

policy point of view, they are fundamentally different than the accountability problem of identifying 

which individual TPPs are better or worse. For example, even if teachers from alternative TPPs were on 

average better than those from traditional TPPs, we could not justify shutting down all traditional TPPs. 

There might be some traditional TPPs that are excellent. 

5.2 How general are our results? 

Our finding that there are only small teacher quality differences between TPPs may seem 

surprising at first. After all, TPPs differ substantially both in selectivity and in their approach to teacher 

training. Some TPPs accept only 10 percent of applicants, while others take nearly all comers. Some 
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TPPs are 4-year degree programs, while others last as little as 12 weeks. It is a little startling that these 

differences in selectivity and training don’t produce bigger differences in teacher effectiveness. 

Yet results like this are not unusual in education. In many areas of education, little of the variation 

in individual success lies between institutions. In elementary school, only 20 percent of the variation in 

student test scores lies between students from different schools (Coleman et al., 1966). After college, for 

graduates with the same major, only 1 to 9 percent of the variance in log earnings lies between graduates 

of different colleges (Rumberger & Thomas, 1993). Perhaps we should not be surprised by results 

suggesting that only 1 to 3 percent of the variance in teacher quality lies between teachers from different 

TPPs (Goldhaber et al., 2013; Koedel, Parsons, et al., 2015). And since the total heterogeneity among 

teachers is 0.09 to 0.16 SD in student test scores (Staiger & Rockoff, 2010), it stands to reason that the 

heterogeneity between TPPs would be as small as 0.01 to .03 SD.10 

That said, our results are limited to Texas reading and math tests in 2011, and it is possible that 

results for other years, states, and tests would be different. Results from Missouri and Washington state 

are similar (Goldhaber et al., 2013; Koedel, Parsons, et al., 2015), but results from New York City and 

Louisiana suggest larger differences between TPPs (Boyd et al., 2009; Gansle et al., 2012). At the 

moment it is not clear why estimated TPP difference are larger in some studies than in others. The 

reasons could be substantive or methodological, and until they are sorted out, there will be some 

uncertainty regarding the potential of TPP accountability to raise test scores in different states.  

It is also possible that results would be different for different outcome variables. Most TPP 

evaluations have focused on exclusively on reading and math scores, although the Louisiana evaluation 

also looked at science and social studies scores. It would be informative, though challenging, to estimate 

between-TPP differences in teacher effects on grade retention and graduation rates. In fact, policy often 
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highlights graduation as an outcome that TPPs should be accountable for (Levine, 2006; Texas State 

Legislature, 2009; US Department of Education, 2011).  

5.3 Recommended methods 

Although our results suggest limits on the potential of TPP accountability systems, implementation 

of these systems may continue as the merits of the policy are debated. For evaluators who continue to 

estimate teacher quality differences between TPPs, we have some recommendations and cautions 

regarding which methods to use.  

While TPP point estimates are fairly robust to modeling decisions, SE estimates are more sensitive 

and can be biased and volatile. If there are several sets of independent point estimates—e.g., estimates 

from different grades, or estimates in different subjects—then we can ignore the SE estimates and 

estimate heterogeneity and reliability using the point estimates alone. However, we need SE estimates to 

evaluate which TPPs are significantly different from average. 

To estimate SEs, it is essential to account for the correlation between students taught by the same 

teacher. Within-teacher correlation can be modeled using either teacher clusters or teacher REs. Teacher 

clusters and teacher REs give similar SE estimates for large TPPs with at least 40 teachers. For smaller 

TPPs, though, teacher REs are preferable because teacher teacher-clustered SEs are volatile and biased. 

The bias of clustered SEs does not improve if we cluster at the school or district level instead of the 

teacher level, and if we cluster at the TPP level the bias gets much worse.  

When using an RE model, there is a statistical case for adding REs at the school and district level 

as well as the teacher level. These higher-level REs make only a small difference to the TPP estimates, 

but the difference can be large enough to nudge some TPP estimates from significance to insignificance. 

TPP estimates are typically compared using a caterpillar plot, but we argue that traditional 

caterpillar plots are misleading in two ways. First, caterpillar plots rank TPPs by their estimated effects, 
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and it is easy to get the impression that the TPPs are being ranked on quality, even though the estimates 

consist primarily of noise. Traditional caterpillar plots can also mislead users by using pointwise 95 

percent CIs, which are too narrow because they ignore the problem of multiple comparisons. 

To highlight the issues of noise and multiple comparisons, caterpillar plots should use Bonferroni 

CIs and overlay a null distribution that shows what the estimates would look like if only estimation error 

were present there were no real differences between TPPs. Highlighting noise and correcting for 

multiple comparisons may help to steer policymakers away from unnecessary or counterproductive 

actions such as such as closing an average TPP because a noisy estimate makes it appear worse than it 

is. In addition, cautious analysis can highlight the occasional situation where—despite noise, and 

accounting for multiple comparisons—we can have confidence that one TPP is better or worse than 

average.  

We hope that our statistical recommendations will be widely adopted in TPP evaluations and guide 

policy makers toward careful policy decisions based on a qualified reading of TPP estimates.  

5.4 Policy risks and benefits 

Even if our recommendations are followed carefully, the benefits of a TPP accountability system 

would probably be small. Not only are the differences between TPPs small and hard to estimate, but 

once we identify an exceptional TPP there is no guarantee that we can engineer an effective policy 

response. Even if an accountability system finds an excellent TPP, there is no guarantee that the TPP can 

expand without diluting quality. Likewise, even if an accountability system shuts down a poor TPP, 

there is no guarantee that the TPP that replaces it will be much better. For example, if a TPP is limited 

by the quality of the local applicant pool, then another TPP screening the same local applicants may not 

get better results. 
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Even if evaluators follow our recommendations, we remain concerned that TPP estimates will not 

be used carefully. Experience has repeatedly shown that, once information is released to leaders and the 

public, it takes on a life of its own. Asterisks and footnotes are dropped, signal is mistaken for noise, and 

both leaders and the general public can be “fooled by randomness” (Taleb, 2005). There is a danger that 

leaders may build TPP accountability on an unstable foundation, basing overconfident actions on 

evidence that is far less reliable than they imagine.  

 

1 We excluded students who in 2011 took the Spanish-language TAKS or the “accommodated” TAKS for special 
education students. We included the scores of students who took the regular TAKS in 2011 but had taken the 
Spanish or accommodated TAKS in previous years. 
2 We obtained both Δߙො and ෠ܸ  using Stata’s postestimation command contrast gw.TPP. 
3 An equivalent but more confusing way to say this is that the asymptotic distribution of the LRRE statistic is a 
50:50 mixture of ߯ଵ

ଶ and ߯଴
ଶ distributions, where the ߯଴

ଶ distribution is a point mass at 0 (LaHuis & Ferguson, 
2009; Stram & Lee, 1994). 
4 In general, correcting for multiple comparisons means using longer CIs with higher coverage than 95 percent. 
No past evaluation has done this; in fact, one TPP evaluation corrected in the opposite direction by using 68 
percent CIs, which are approximately half as long as 95 percent CIs (Gansle, Noell, & Burns, 2012). The use of 
68 percent CIs exacerbates the problem of multiple comparisons. If even 10 identical TPPs are compared using 68 
percent CIs, there is a 98 percent chance (1–.6810) of erroneously concluding that at least one TPP differs 
significantly from the average. 
5 Here we are assuming that the correlations among the estimates are small. As remarked earlier, this 
assumption is reasonable when W is similar to Q.  
6 We approximate the null distribution using the following procedure. For the pth TPP, the null distribution is 
ܰ൫0, ,ଵ,௣ݍ௣ଶ൯, from which we draw the 1st through 99th percentiles ሼݏ̂ … ,  ଽଽ,௣ሽ. Then for all the TPPs together, weݍ
approximate the null distribution ࣞ଴ with a set containing all the percentiles that we have drawn for the individual 
TPPs—i.e., 	 ෡ࣞ଴ ൎ ሼݍଵ,ଵ, … , ,ଽଽ,ଵݍ ,ଵ,ଶݍ … , ,ଽଽ,ଶݍ … ,ଵ,௉ݍ … ,  ଽଽ,௉ሽ. We implemented this approximation procedureݍ
in a few lines of Stata code, and compared the results to quantiles from the exact distribution  ࣞ଴ which we 
calculated using Mathematica software. The results were visually indistinguishable.  
7 All these ANOVA calculations are implemented by the loneway command in Stata. 
8 Koedel’s versions of the W and Q statistic use ߙത instead of ߙത௡ and ߙത௦ଶ (Koedel, 2009; Koedel, Parsons, 
Podgursky, & Ehlert, 2015). 
9 The agreement between the DL and EB estimators is not surprising, since in equation (15) we defined the EB 
estimator as a function of the DL estimator. If we had defined the EB estimator as a function of a different 
estimator, we might have gotten different results.  
10 To walk through the calculation: if the SD between teachers is .09 and only 1 percent of the teacher variance (SD2) lies 
between TPPs, then the SD between TPPs would be . 09 ൈ √. 01 ൎ .01. Alternatively, if the SD between teachers is .16 and 
as much as 3 percent of the teacher variance lies between TPPs, then the SD between TPPs would be . 16 ൈ √. 03 ൎ .03. 
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Figures 

 

Figure 1. TPP contrasts from the all-grade models. 
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Figure 2. Standard errors (SE) of small and large TPPs under a model with teacher random effects vs. a model with teacher clustering. 
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Tables 

Table 1. Sample sizes, all grades 

 Math Reading 
Students 298,584 210,397 
Teachers 6,358 4,965 
Classrooms 24,008 17,660 
Schools 3,491 3,085 
Districts 765 711 
TPPs 95 92 

Note. The sample is limited to teachers in their 1st, 2nd, or 3rd year of teaching. 
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Table 2. TPPs in Texas, ranked by the number of 1st-3rd year math teachers in our data 

 Teachers         
TPP Math Reading         
1. A+ Texas Teachers 1,067 823  35. TeacherBuilder.com 46 29  69. University of the Incarnate Word 15 15 
2. iteachTEXAS 423 307  36. Region 11 Education Service Center 46 53  70. Sul Ross State University - Rio Grande 13 13 
3. Region 04 Education Service Center 211 208  37. Region 13 Education Service Center 45 16  71. Collin County Community College 12  
4. ACT-Houston 210 166  38. Region 18 Education Service Center 44 33  72. Hardin-Simmons University 12 8 
5. Texas A&M University 195 172  39. Quality ACT 44 33  73. Region 03 Education Service Center 11 10 
6. University of Texas - El Paso 195 141  40. Texas Teaching Fellows (Austin) 44 29  74. Texas Christian University 9 17 
7. Education Career Alternatives Program 171 132  41. A Career in Teaching-EPP (Corpus Christi) 43 27  75. McMurry University 8  
8. Texas A&M University - Commerce 156 92  42. Pasadena ISD 41 29  76. Texas Alternative Center for Teachers 8 8 
9. Texas State University-San Marcos 154 123  43. University of Houston-Victoria 41 29  77. ACT-San Antonio at Central Texas 8 12 
10. University of Texas - San Antonio 153 129  44. Texas A&M University - Kingsville 41 41  78. Southern Methodist University 8 8 
11. University of North Texas 146 114  45. Baylor University 38 24  79. Alamo Community College 8 14 
12. Houston ISD 129 114  46. Angelo State University 38 10  80. St Mary's University 7 6 
13. Sam Houston State University 127 95  47. University of Houston-Clear Lake 38 43  81. Howard Payne University 7  
14. Dallas ISD 124 80  48. Region 07 Education Service Center 37 13  82. Houston Baptist University 7 6 
15. Region 10 Education Service Center 110 77  49. Texas Alternative Certification Program 37 27  83. Region 14 Education Service Center 7  
16. Texas Tech University 108 96  50. University of Houston-Downtown 36 44  84. Blinn College 6 7 
17. Tarleton State University 103 65  51. LeTourneau University 35 31  85. Austin Community College 6 6 
18. Region 20 Education Service Center 100 79  52. Region 12 Education Service Center 32 27  86. Texas Lutheran University 5  
19. West Texas A&M University 97 83  53. Texas Teaching Fellows (San Antonio) 30 26  87. University of Mary Hardin-Baylor 5  
20. University of Texas - Austin 96 61  54. South Texas Transition to Teaching ACP 26 16  88. Texas Wesleyan University 5 8 
21. Region 01 Education Service Center 93 68  55. Lamar University 25 26  89. Region 05 Education Service Center 5 5 
22. University of Houston 92 49  56. Texas A&M University - Texarkana 25 18  90. Our Lady of the Lake University 5 5 
23. Texas Teaching Fellows (Dallas) 92 39  57. Lamar State College - Orange ACE Pgm 24 25  91. Austin College 5  
24. University of Texas - Pan American 88 72  58. University of Texas - Tyler 24 55  92. St Edward's University 4 4 
25. Stephen F Austin State University 87 89  59. Midwestern State University 23 14  93. Alternative Cert for Teachers NOW! 4  
26. Texas Woman's University 76 60  60. Yes Preparatory Public Schools 22 13  94. Abilene Christian University 4 6 
27. ACT-San Antonio  71 39  61. University of Texas - Dallas 20 27  95. Educators of Excellence ACP 4 6 
28. ACT-Rio Grande Valley 66 54  62. ACT-Houston at Dallas 20 24  96. Dallas Baptist University  8 
29. Lone Star College 63 61  63. Region 19 Education Service Center 19 9  97. Southwestern Assemblies of God Univ  5 
30. Web-Centric Alternative Cert Program 63 56  64. University of Texas - Permian Basin 19 14  98. Alief ISD  5 
31. Texas A&M International University 63 33  65. Wayland Baptist University 18 17  99. A Career in Teaching-EPP (McAllen)  3 
32. University of Texas - Brownsville 60 56  66. McLennan Community College 17 10  100. Concordia University  5 
33. Texas A&M University - Corpus Christi 51 35  67. Lubbock Christian University 17 5     
34. University of Texas - Arlington 50 56  68. Alternative-South Texas Educator Program 15 15     

 

 



 

Table 3. Estimates, SEs, and significance of TPP effects 

a. All TPPs 

   Point estimates 

Mean 
of SEs 

Significantly different 
TPPs 

Subject Model TPPs SD 
Corr. with 

OLS 

With 
Bonferroni 
correction Without

Math OLS 95 .071 1 .023 23 43 
 OLS: teacher clustering  .071 1 .043 2 16 
 OLS: school clustering  .071 1 .043 2 14 
 OLS: district clustering  .071 1 .041 4 18 
 OLS: TPP clustering  .071 1 .011 48 63 
 RE: random teachers  .078 .89 .050 0 10 
 RE: random teachers, schools  .075 .89 .050 0 7 
 RE: random teachers, schools, districts  .075 .88 .050 0 5 
Reading OLS 92 .054 1 .027 5 28 
 OLS: teacher clustering  .054 1 .039 1 10 
 OLS: school clustering  .054 1 .039 1 10 
 OLS: district clustering  .054 1 .037 3 14 
 OLS: TPP clustering  .054 1 .011 37 56 
 RE: random teachers  .056 .97 .041 1 11 
 RE: random teachers, schools  .051 .95 .041 0 7 
 RE: random teachers, schools, districts  .051 .95 .041 0 6 

 
b. Large TPPs (≥40 teachers in subject) 

   Point estimates 

Mean 
of SEs 

Significantly different 
TPPs 

Subject Model TPPs SD 
Corr. with 

OLS 

With 
Bonferroni 
correction Without 

Math OLS 48 .038 1 .010 17 27 
 OLS: teacher clustering  .038 1 .025 1 9 
 OLS: school clustering  .038 1 .026 0 8 
 OLS: district clustering  .038 1 .026 1 9 
 OLS: TPP clustering  .038 1 .007 25 35 
 RE: random teachers  .036 .85 .026 1 7 
 RE: random teachers, schools  .030 .78 .026 0 3 
 RE: random teachers, schools, districts  .030 .75 .027 0 1 
Reading OLS 37 .022 1 .013 4 10 
 OLS: teacher clustering  .022 1 .020 0 4 
 OLS: school clustering  .022 1 .021 0 4 
 OLS: district clustering  .022 1 .020 2 6 
 OLS: TPP clustering  .022 1 .006 13 21 
 RE: random teachers  .022 .84 .020 1 4 
 RE: random teachers, schools  .021 .76 .020 1 3 
 RE: random teachers, schools, districts  .020 .73 .021 0 2 



Table 4. Comparing fit of all-grade TPP models  

Subject Model 
District SD

(SE) 
School SD

(SE) 
Teacher SD

(SE) 
Residual SD

(SE) 
LRRE 

Math OLS 
   

.571*** 
(.001) 

 

 
RE with random teachers 

  
.194*** 
(.002) 

.544*** 
(.001) 

17,475*** 

 
RE with random teachers, schools 

 
.118*** 
(.005) 

.157*** 
(.003) 

.544*** 
(.001) 

199*** 

 
RE with random teachers, schools, districts .040*** 

(.006) 
.113*** 
(.005) 

.157*** 
(.003) 

.544*** 
(.001) 

25*** 

Reading OLS 
   

.662*** 
(.001) 

 

 
RE with random teachers 

  
.119*** 
(.002) 

.652*** 
(.001) 

2,635*** 

 
RE with random teachers, schools 

 
.085*** 
(.004) 

.086*** 
(.004) 

.652*** 
(.001) 

111*** 

 

RE with random teachers, schools, districts .023*** 
(.006) 

.082*** 
(.005) 

.086*** 
(.004) 

.652*** 
(.001) 

6** 

 
 
*p<.05, **p<.01, ***p<.001. SEs in parentheses. 
Note. OLS=ordinary least squares. RE=random effects. The LRRE test compares each model to the model above it. 



 

Table 5. Reliability and heterogeneity, estimated by comparing reading and math estimates 

a. All TPPs (87 TPPs with both reading and math) 

Estimates 
Correlation 
(95% CI) 

Heterogeneity SD
߬̂ூ஼஼ (95% CI) F 

OLS (with or without clustering) .38 (.20 ,.56) .04  (.03 ,.05) 2.14*** 
RE: random teachers .43 (.26 ,.60) .04  (.03 ,.05) 2.43*** 
RE: random teachers, schools .42 (.24 ,.59) .04  (.03 ,.05) 2.33*** 
RE: random teachers, schools, districts .43 (.25 ,.60) .04  (.03 ,.05) 2.39*** 

 

b. Large TPPs (36 TPPs with ≥40 teachers in both reading and math) 
 

Estimates 
Correlation 
(95% CI) 

Heterogeneity SD 
߬̂ூ஼஼ (95% CI) F 

OLS (with or without clustering) .36 (.08 ,.65) .019 (.009 ,.026)  1.98* 
RE: random teachers .31 (.01 ,.61) .017 (.003 ,.024)  1.77* 
RE: random teachers, schools .31 (.01 ,.61) .015 (.002 ,.021)  1.77* 
RE: random teachers, schools, districts .35 (.06 ,.64) .015 (.006 ,.021)  1.93* 

 
*p<.05, **p<.01, ***p<.001. CI=CI. 
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Table 6. Reliability and heterogeneity of all-grade estimates, estimated by comparing single-grade estimates   

a. All TPPs  

Subject Estimates ߩොܥܥܫ (95% CI)  ߬̂ூ஼஼ (95% CI) FICC 
Math OLS (with or without clustering) .40 (.15,.57) .03 (.02 ,.04) 1.68*** 
 RE: random teachers .42 (.18,.58) .03 (.02 ,.04) 1.73*** 
 RE: random teachers, schools .38 (.12,.55) .03 (.01 ,.04) 1.62*** 
 RE: random teachers, schools, districts .38 (.12,.55) .03 (.01 ,.04) 1.61*** 

Reading OLS (with or without clustering) .26 (.00,.47) .02 (.00 ,.03) 1.34* 
 RE: random teachers .36 (.08,.55) .02 (.01 ,.03) 1.57** 
 RE: random teachers, schools .31 (.00,.51) .02 (.00 ,.03) 1.45* 
 RE: random teachers, schools, districts .31 (.00,.51) .02 (.00 ,.03) 1.44* 

 

b. Large TPPs (≥40 teachers in subject) 

Subject Estimates ߩොܥܥܫ (95% CI)  ߬̂ூ஼஼ (95% CI) FICC 
Math OLS (with or without clustering) .37 (0,.58) .02 (0, .03) 1.59** 

 RE: random teachers .37 (0,.58) .02 (0, .03) 1.60** 

 RE: random teachers, schools .19 (0,.46) .01 (0, .02) 1.24 

 RE: random teachers, schools, districts .14 (0,.42) .01 (0, .02) 1.16 

Reading OLS (with or without clustering) .10 (0,.43) .01 (0, .02) 1.11 

 RE: random teachers .11 (0,.44) .01 (0, .02) 1.13 

 RE: random teachers, schools .10 (0,.43) .01 (0, .02) 1.11 

 RE: random teachers, schools, districts .13 (0,.45) .01 (0, .02) 1.15 
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Table 7. Tests of homogeneity 

  All TPPs Large TPPs 
Subject Estimates df LRTPP Q W df Q 
Math OLS 94 820*** 819*** 821*** 47 567***
 OLS: teacher clustering 231*** 232*** 93***
 OLS: school clustering 250*** 261*** 87***
 OLS: district clustering 289*** 518*** 116***
 OLS: TPP clustering 3,265*** 1×108*** 1,297*** 
 RE: random teachers 148*** 151*** 150*** 87***
 RE: random teachers, schools 122* 123* 124* 60
 RE: random teachers, schools, districts 117 117 118* 54
Reading OLS 91 344*** 344*** 344*** 36 169***
 OLS: teacher clustering 151*** 153*** 56*
 OLS: school clustering 154*** 163*** 54*
 OLS: district clustering 206*** 502*** 78***
 OLS: TPP clustering 2,586*** 8×107*** 847***
 RE: random teachers 134** 136*** 136** 56*
 RE: random teachers, schools 119* 120* 120* 51
 RE: random teachers, schools, districts 111 112 112 45

*p<.05, **p<.01, ***p<.001. The LRTPP is not reported for clustered models, because the calculation of the 
likelihood ignores clustering. 
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Table 8. Estimates of heterogeneity and reliability  

a. All TPPs  

  Reliability	 Heterogeneity	SD	

Subject Estimates ߩොܪ	 	ොܳߩ (95% CI) ܮܦොߩ 	ܤܧොߩ ߬̂ு	 ߬̂ொ ߬̂஽௅ ߬̂ா஻

Math OLS .82  .89  (.87,.90)  .17  .19  .06  .07  .03  .03 

 OLS: teacher clustering .41  .59  (.49,.68)  .18  .09  .05  .05  .03  .02 

 OLS: school clustering .45  .62  (.53,.70)  .21  .12  .05  .06  .03  .02 

 OLS: district clustering .52  .67  (.60,.74)  .24  .15  .05  .06  .03  .03 

 OLS: TPP clustering .97  .97  (.97,.97)  .29  .72  .07  .07  .04  .06 

 RE: random teachers .40  .38  (.20,.52)  .08  .02  .05  .05  .02  .01 

 RE: random teachers, schools .38  .24  (.01,.41)  .04  .01  .05  .04  .02  .01 

 RE: random teachers, schools, districts .37  .20  (.00,.39)  .03  .00  .05  .03  .01  .00 

Reading OLS .64  .73  (.67,.78)  .21  .13  .04  .05  .02  .02 

 OLS: teacher clustering .24  .39  (.22,.53)  .13  .04  .03  .03  .02  .01 

 OLS: school clustering .24  .41  (.24,.54)  .13  .04  .03  .03  .02  .01 

 OLS: district clustering .31  .56  (.44,.65)  .20  .09  .03  .04  .02  .02 

 OLS: TPP clustering .95  .96  (.96,.97)  .38  .74  .05  .05  .03  .05 

 RE: random teachers .31  .33  (.13,.48)  .09  .02  .03  .03  .02  .01 

 RE: random teachers, schools .18  .24  (.01,.42)  .07  .01  .02  .03  .01  .01 

 RE: random teachers, schools, districts .17  .19  (.00,.38)  .05  .01  .02  .02  .01  .00 

 

b. Large TPPs (≥40 teachers in subject) 

  Reliability	 Heterogeneity	SD	

Subject Estimates ߩොܪ	 	ොܳߩ (95% CI) 	ܮܦොߩ 	ܤܧොߩ ߬̂ு	 ߬̂ொ ߬̂஽௅ ߬̂ா஻

Math OLS .92  .92  (.90, .93)  .49  .66  .04  .04  .03  .03 

 OLS: teacher clustering .50  .49  (.29, .64)  .26  .11  .03  .03  .02  .01 

 OLS: school clustering .49  .46  (.24, .62)  .24  .09  .03  .03  .02  .01 

 OLS: district clustering .44  .59  (.44, .70)  .36  .18  .03  .03  .02  .02 

 OLS: TPP clustering .95  .96  (.96, .97)  .49  .80  .04  .04  .03  .03 

 RE: random teachers .43  .46  (.24, .62)  .29  .12  .02  .02  .02  .01 

 RE: random teachers, schools .18  .22  (.00, .46)  .13  .02  .01  .01  .01  .00 

 RE: random teachers, schools, districts .09  .16  (.00, .42)  .09  .01  .01  .01  .01  .00 

Reading OLS .63  .78  (.70, .84)  .78  .54  .02  .02  .02  .02 

 OLS: teacher clustering .04  .35  (.03, .57)  .32  .10  .00  .01  .01  .01 

 OLS: school clustering .01  .34  (.00, .56)  .30  .09  .00  .01  .01  .01 

 OLS: district clustering .07  .53  (.32, .68)  .61  .28  .01  .02  .02  .01 

 OLS: TPP clustering .91  .96  (.95, .96)  .92  .86  .02  .02  .02  .02 

 RE: random teachers .05  .36  (.04, .57)  .32  .10  .01  .01  .01  .01 

 RE: random teachers, schools .00  .29  (.00, .53)  .24  .06  .00  .01  .01  .01 

 RE: random teachers, schools, districts .00  .21  (.00, .48)  .16  .03  .00  .01  .01  .00 

 


